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Abstract: Supply chains face risks from various 
unexpected events that make disruptions almost inevitable. 
This paper presents a disruption recovery model for a single 
stage production and inventory system, where finished 
product supply is randomly disrupted for periods of random 
duration. A production facility that manufactures a single 
product following the Economic Production Quantity policy 
is considered. The model is solved using a search algorithm 
combined with a penalty function method to find the best 
recovery plan. It is shown that the optimal recovery schedule 
is dependent on the extent of the disruption, as well as the 
back order cost and lost sales cost parameters. The proposed 
model is seen to be a very useful tool for manufacturers to 
make quick decisions on the optimal recovery plan after the 
occurrence of a disruption. 
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I. Introduction 
 
The supply chain is a system that consists of facilities or 
entities that are involved in transferring goods from supplier 
to customer. The activities in a supply chain have the role of 
transforming raw materials into finished products that are 
delivered to the end customer. Conventional supply chains 
are often designed to operate smoothly in a problem-free 
environment. However, in the real world, unexpected events 
such as machine breakdowns, transportation failures, labor 
strikes, and natural disasters are bound to happen and are 
often inevitable. This may cause disruptions at different 
levels of the supply chain, from the upstream to the 
downstream stages. Without a proper response to these events, 
a manufacturer would have to incur high additional costs to 
recover from the negative impacts of disruption. For instance, 
the 1995 earthquake that hit Kobe left vast damage to all 
transportation links in Kobe and nearly destroyed the world’s 
sixth-largest shipping port. The 7.2 scale Richter quake 
terribly affected Toyota, where an estimated production of 
20,000 cars, equivalent to $200 million worth of revenue was 
lost due to parts shortages [8].  
 
Realizing the potential losses from such events, enterprises 
have recently shown a growing interest to incorporate risk 
management into their operations. Two tactics to deal with 
the risk of disruption include mitigation and contingency 

tactics [11]. A commonly practiced strategy for protecting 
against disruption is to hold additional inventory in the 
system for the entire period. Various related studies have 
been conducted for inventory models under the continuous 
review framework [5] [6] [12] and the periodic review 
framework [1] [11] [3]. These studies mainly design their 
inventory models to incorporate supply uncertainty 
occurrences by modifying the original non-disruption models. 
However, the majority result in stationary higher ordering 
quantities or bigger stock levels that would incur 
unnecessarily high holding costs for the long run. Thus, this 
motivates us to focus on disruption recovery strategies in 
developing our model. 
 
Studies on optimal recovery strategies for disruptions are 
rather scarce. In the production and inventory literature with 
regards to the Economic Lot Scheduling Problem (ELSP), [4] 
and [10] proposed methods on how to recover from a 
schedule disruption. Xia et al. [13] developed a recovery 
strategy for an EPQ system subject to disruption in the form 
of parameter changes. The main aim was to minimize the 
disruption costs by incorporating penalty costs for deviations 
in the objective function. The original plan is recovered 
within short time windows spanning two to three production 
cycles. The work presented here is very much related to this 
paper. 
 
In this paper, a recovery model for a single stage inventory 
system subject to disruption is presented. We consider a 
production facility that manufactures a single product in 
batches at a constant time interval following the Economic 
Production Quantity (EPQ) model. However, it is assumed 
that a random disruption occurs during a cycle, thus disabling 
the production to run as scheduled. After the disruption 
occurs, a specified duration, known as the recovery time 
window, is allocated to the production system to allow time 
to recover from the disruption. During the recovery duration, 
changes are made to the original production schedule to try to 
satisfy customer orders, where shortages may become a mix 
of backorders and lost sales. Similar to other disruption 
management models, the original production schedule is 
restored at the end of the recovery time window. 
 
The production facility faces four types of costs: a setup cost, 
inventory holding cost, backorder cost, and lost sales cost. 
The objective of the model is to determine the optimal 
production
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Figure. 1 Production Inventory Curve with Disruption 
 
quantity for the cycles in the recovery time window so that 
the expected total cost is minimized. The results show that 
the optimal length of the recovery duration is dependent on 
the length of the disruption, as well as the relationship 
between the backorder and lost sales cost.  
 
The remainder of this paper is structured as follows. The 
model formulation is proposed in Section 2. Section 3 
suggests a possible method to solve the model and in Section 
4, the related computational results are provided in the form 
of several numerical examples and an analysis of the model. 
Finally, Section 5 summarizes the paper and provides 
directions for future research. 
 
II. Model Formulation 
 
We assume that the current production-inventory system is 
run based on the well known Economic Production Quantity 
(EPQ) policy. Specifically, we consider the EPQ system 
similar to Sarker and Khan [7]. The system has a lot-for-lot 
delivery policy, where the optimal production lot size, (Q) is: 

H

AP
Q

2


           

          

(1) 
 
The notations (A, P, H) are defined in the next column. In the 
next sub-sections, a similar model accounting for disruption 
will be developed. 
 
Disruption Recovery Model Formulation 
In this section, a general cost model is developed for a 
production facility that experiences disruption, as explained 
in section 1. The disruption recovery time window concept 
considered in this paper was adopted from the works of [13]. 
However, our model assumes that the pre-disruption period is 
zero and the disruption randomly occurs such that it is not 

known in advance. For simplicity, we set the recovery time 
window to be equal to n cycle times from the start of a 
disruption. During the recovery period, the production 
schedule is modified such that the length of n cycles in the 
recovery schedule is equal to n cycles in the original schedule. 
The only difference is that the recovery schedule includes the 
disruption length, Td. In our model, n is made as a decision 
variable. Like other disruption management models, the term 
recovery is defined as restoring the original production 
schedule within a considerably short time period, while 
minimizing overall costs. The model is capable of 
determining the optimal manufacturing batch size for the 
production run in the recovery time window, so as to 
minimize the total cost for recovery, while trying to fulfill 
customer demands and other system constraints. The problem 
is illustrated in Figure I. The notations used in developing the 
cost function are as follows: 

 
A: setup cost for a cycle ($/setup) 
D: demand rate for a product (units/year) 
H: annual inventory holding cost ($/unit/year) 
P: production rate (units/year) 
Q: production lot size in the original schedule (units),  
Td: disruption period 
u: production down time for a normal cycle (setup time + idle 
time), (T- Q/P) 
te: start of recovery time window 
tf: end of recovery time window 
T: production cycle time for a normal cycle (Q/D) 
ρ: production up time for a normal cycle (Q/P) 
B: unit back order cost per unit time ($/unit/time) 
L: unit lost sales cost ($/unit) 
Xi: production quantity for cycle i in the recovery window 
(units) 
Ti: production up time for cycle i in the recovery window 
(Xi/P) 
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St: setup time for a cycle 
δ: idle time for a cycle 
 
When a disruption occurs, this will create a production delay 
in the system. This delay is dependent on the total disruption 
duration, Td. Production can only resume after the disruption 
ends when the problem is rectified. Unsatisfied customer 
demand during this stock out period will be partially 
backlogged, where some will become backorders, which will 
be produced during the recovery time window, and the 
remainder will become lost sales. The backorder costs, B, 
will be a function of time delayed with units ($/unit/unit 
time). Additionally, lost sales may occur during any of the 
cycles in the recovery time window. One of the advantages of 
our model is the ability to decide on the amount of 
backorders and lost sales in each recovery cycle that provides 
the most cost effective solution. 
 
Mathematical Representation 
Let Td be the disruption period occurring at the beginning of a 
cycle (see Figure 2). It is assumed that Td is less than the 
normal production cycle time, T, for this model. After a 
disruption of Td occurs, recovery takes place by utilizing the 
production idle times, δ, in the original schedule. The 
recovery time window will be n normal production cycle 
times from the start of disruption. We define the decision 
variable Xi as the production quantity for cycle i in the 
recovery time window and Ti as its respective production time, 
where i= 1, 2, …, n. However, in this paper we assume:   

 
  X1 = X2 = … = X, thus T1 = T2 = … = Tx 

 
The setup cost equation is rather straight forward and can be 
obtained by: 
 
= A · (Number of setups)    
= A · n                                            
(2) 

 
The inventory holding cost is equal to the unit inventory 
holding cost, H, multiplied by the total inventory during the 
recovery time, which is the area under the curve. This is 
calculated as: 
 
= H [½ X Tx + ½ X Tx + ...] 

= 
xTXn

H


2
 

= 
P

X
Xn

H
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2
 

=  2

2
Xn

P

H
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(3) 
 
Next, the backorder cost formulation can be derived by 
multiplying the unit backorder costs, B, with the backorder 

units of each cycle i and it’s time delay, given that the delay 
is a positive value:    
 
B [X· (Delay1) + X · (Delay2) + X · (Delay3) + ...  + X · 
(Delayn)] 

= B [X·


n

i
iDelay

1

]                            

(4) 
 
The delay for backorders in each cycle is calculated below: 

Delay i =  1
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where all delays are non-negative. 
 
Thus the backorder cost is: 
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Finally, the lost sales cost is obtained as: 
 
= L (nQ - X - X - X - ...) 
= L (nQ -nX) 
= Ln (Q-X)                             
(7) 
 
The sum of all the cost components above gives the total 
relevant costs of the recovery plan. The total cost function 
can be derived as below: 
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Using the sum of powers rule, the above equation can be 

expanded to the following: 
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Therefore, the model (P1) is formulated as follows: 
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Subject to: 
 
X ≤ Q                 
(9) 
nX ≤ P (nT – nSt - Td)                
(10) 
nX ≥ nTD – n(Q -X)             
(11) 
 
The objective function (8) comprises of the four cost 
components mentioned earlier, each separated in parenthesis. 
Constraint (9) requires that the production quantities in the 
recovery time window be less than the production quantity 
under the original schedule due to the delivery and 
transportation requirements. Constraint (10) represents the 
available production capacity and constraint (11) ensures that 
all the demand is accounted for. 
 
By solving the above model for Xi subject to the constraints 
(9)-(11), one can obtain the optimal recovery plan for the 
production system under disruption. Without disruption, this 
model will reduce to the original EPQ model as presented 
earlier. The following theorems have been developed for the 
model: 
 
Theorem 1. For a given A and H, if B<<L, the number of 

recovery cycles will be  n , where 
  QSTP

TP
n

t

d




 . 

Proof. From (10), 
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TP
n

t

d




                             

(12) 
From (9),  QX   

Substituting QX   in (12), we get 
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n

t
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(13) 

So the value of 
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
                         

(14)

 is the minimum number of cycles to fulfill the demand 
without any lost sales. As n must be an integer, we use  n .  

For QX  , we can see that     QSTPXSTP tt  . 

This means that 
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 , in which case, 

there will be some lost sales. As we assume B<<L, the lost 
sales will incur higher costs. Therefore, it would be more 
optimal for QX  . This proves that the number of recovery 

cycles will be  n  for the case where B<<L. 

 
Theorem 2. For a given A and H, if B>>L, the number of 

recovery cycles will be 
  QSTP

TP
n

t

d




 .  

Proof. For B>>L, lost sales will be encouraged for quick 
recovery. That means QX  , which indicates 

that
    QSTP
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t

d
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
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 . This proves that when 

B>>L, some demand will become lost sales, which results in 

n to be less than 
  QSTP

TP

t

d


  

 
III. Solution Approach 
 
In this model, the number of recovery cycles, n, has been set 
as an integer. It may be given as a user input or can be 
determined as part of the solution process. However, if one 
can fix the value of n, the solution process for Model P1 will 
be easier. After rearranging (12), it can be shown that this 
constraint is independent of both n and X. Therefore it can be 
ignored from the optimization process. Based on the 
theorems presented earlier, our solution approach can be 
summarized as follows: 
 
Step 0: Initialize the parameters 
Step 1: Find n using (15) and set  nn   

Step 2: Solve Model P1 for X using nn   
Step 3: If B<<L, record the solution and go to Step 5 
Step 4:  a) Set K = 1 
 b) Set n = n – K 
 c) Solve Model P1 

d) If ),1()(  KTCKTC set K = K+1, go to (b). 

Otherwise, record the solution and go to Step 5. 
Step 5: Stop 
 
The Model P1 can be categorized as a non-linear constrained 
integer optimization problem and is solved using the penalty 
function method to find the optimal values of X.  
 
The penalty method has been used widely in the literature for 
solving constrained optimization problems. The basic idea 
behind this method is to approximate a constrained 
optimization problem with a sequence of unconstrained 
problems that are easier to solve. This is achieved by adding 
a penalty in the objective function for infeasibility, which 
will increase the objective for any given constrained violation 
[9]. The technique used for solving our model is known as 
the dynamic penalty function, where the penalty parameter 
for a

Table 1 Comparison of  the results between the Penalty Method and LINGO for five test problems 
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given violation increases as the search progresses. This 
property allows highly infeasible solutions at the beginning 
of the search, but eventually approaches to an optimal 
solution as the penalty parameter becomes larger. Since the 
points generated move to a final solution from outside the 
feasible region, this technique is also referred to as an 
exterior penalty function method [2]. A summary of the 
penalty function method proposed by Bazaraa and Shetty [2] 
is provided below. 
 
Initialization Step: Let ε > 0 be a termination scalar. Choose 
an initial point X1, a penalty parameter µ > 0, and a scalar β > 
0. Let k =1 and proceed to the main step. 
 
Main Step: 

1. Starting with Xk , solve the following problem: 
Minimize )()( XXf k  

Subject to Xx~  
Let Xk+1 be an optimal solution, and go to step 2. 

2. If   )( 1kk X
 
stop; otherwise, let kk  1 , 

replace k by k+1, and go to step 1. 
 
Based on the proposed method above, the parameters to run 
the solution procedure were chosen with µ1 = 0.1 and β = 10. 
The starting point was taken as X1 = Q. The penalty method 
procedure was coded in MATLAB and executed on an Intel 
Core Duo processor with 1.99 GB RAM and a 2.66 GHz 
CPU. 
 
IV. Computational Experience 
 
Some numerical examples are presented in this section to 
demonstrate the applicability of the model developed in this 
paper. Test problems were generated by arbitrarily changing 
the cost parameters (setup, holding, back order, and lost sales 
cost) as well as the disruption duration (see Table I). For a 
backorder cost that is significantly lower than the lost sales 
cost, it is found that all shortages will be backordered and the 
optimal X value is found to be equal to Q. However, when the 
backorder cost is significantly higher than lost sales costs, it 
is shown that there will be some amount of lost sales. In 
addition, the optimal production quantities in the recovery 
schedule, X, is found to be less than that of the original 
schedule, Q. The recovery duration, n, will be shorter for the 
second scenario compared to the first. A comparison of the 

solutions was made by solving the same test problems using 
the LINGO 10.0 optimization software, where both X and n 
are variables. From the comparison results in Table I, it can 
be observed that the differences are negligible for all cases.  
 
An analysis has been carried out to show the effect of 
increased backorder cost, B, on X, TC, backorder quantity 
and lost sales quantity when lost sales cost, L, is significantly 
low (see Figure II). With L fixed at $1/unit and B increasing 
from $10 to $5000, it can be observed that the value of X 
decreases from Q to zero. In addition, the lost sales quantity 
is found to increase, while the backorder quantity decreases 
to zero. An explanation for this is that as the backorder cost 
becomes larger, it is more optimal to have lost sales rather 
than backorders in the recovery schedule. Thus, when a 
portion of the demand becomes lost sales, the quantity to be 
produced, X, becomes lower and the recovery duration, n, 
will become shorter. 
 

Figure 2 Effect of B on X, backorder quantity, lost sales 
quantity and TC when L is fixed at $1/unit 

 
V. Conclusion 
 
A recovery model for a single stage inventory system subject 
to disruption has been presented in this paper. The model 
determines the optimal production quantity and the number 
of cycles for recovery in order to minimize the total cost for 
recovery including setup costs, inventory holding costs and 
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shortage costs. The problem was formulated as a nonlinear 
constrained integer programming problem for which we 
chose the penalty function method as the solution technique. 
The results of several test problems were compared to that of 
a standard optimization software to examine the quality of 
the solution. Computational results were presented for 
different sets of examples and an analysis of the model was 
incorporated to provide better understanding of the model’s 
applicability. From the analysis, it is shown that the optimal 
recovery schedule is dependent on the length of the 
disruption, 
as well as the relationship between the backorder and lost 
sales cost. The proposed model is believed to be a very useful 
tool to help manufacturers make prompt and accurate 
decisions on the optimal recovery plan when a disruption 
occurs in the production system. For future research, work is 
under progress for a similar model that allows different 
values of X for each cycle in the recovery window. We will 
also consider the case where the disruption occurs in the 
middle of a production cycle, where a certain quantity of 
products has already been produced.  
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